»

Kunststoffherstellung


Ganz allgemein entstehen Kunststoffe in sogenannten "Polyreaktionen", das sind Reaktionen, bei denen einzelne Moleküle, genannt "Monomere" (von griech. monos = einzeln und meros = Teilchen), zu "Polymeren" (griech. polys = viel) reagieren.


Kunststoffe werden generell durch schrittweises Aneinanderfügen von Monomeren zu langen Ketten –  den Polymeren  – hergestellt, wobei grundsätzlich zwischen Kettenpolymerisation (auch Kettenreaktion) und Stufenpolymerisation (auch Stufenreaktion) unterschieden wird.

Kettenpolymerisationen
Bei einer Kettenpolymerisation beginnt das Wachstum mit einem Molekül, an das sukzessive weitere Monomere addiert werden. Das die Polymerisation startende Molekül nennt man Initiator, das auf diesen aufwachsende heißt Monomer. Die Zahl der Monomere, aus denen das Polymer letztendlich besteht, ist der Polymerisationsgrad. Der Polymerisationsgrad kann durch das Verhältnis von Monomer zu Initiator eingestellt werden. Mathematisch wird er durch die Mayo-Gleichung abgeschätzt.
 
Radikalische Polymerisation
Bei der radikalischen Polymerisation werden die Wachstumsreaktionen durch Radikale initiiert und fortgepflanzt. Sie ist verglichen mit anderen Kettenreaktionen unempfindlich, leicht zu kontrollieren und liefert schon bei recht kleinen Umsätzen hohe Polymerisationsgrade. Sie wird daher vor allem bei der Herstellung von billigen Kunststoffen, wie LD-PE, PS oder PVC eingesetzt.
Eine Gefahr bei diesem Verfahren stellt die freiwerdende Polymerisationswärme dar. Die radikalische Polymerisation ist exotherm, das heißt bei der Reaktion wird Wärme frei. Diese Wärme erzeugt, wenn sie nicht abgeführt wird, weitere Radikale, so dass sich die Reaktion selbst beschleunigen kann. Im Extremfall kann eine solche „Selbstbeschleunigung“ zur Überlastung des Reaktormaterials und damit zu einer thermischen Explosion führen.

Ionische Polymerisation
Bei ionischen Polymerisationen werden die Wachstumsreaktionen durch ionische Spezies initiiert und fortgepflanzt. Die wachsenden Ketten sind langlebiger (mehrere Stunden bis Tage) als ihre radikalischen Analoga (Lebensdauer etwa 10-3s), man spricht in diesem Zusammenhang auch von sogenannten lebenden Polymeren. Daher kann man nach Abschluss einer Polymerisation auf die noch lebenden, das heißt zur Polymerisation befähigten Ketten, ein weiteres Monomer aufgeben und so ein erneutes Wachstum fortführen.
Polymere, deren Ketten aus zwei oder mehr unterschiedlichen Monomertypen bestehen, nennt man Copolymere. Findet man in einem Copolymeren lange Blöcke des einen Monomers, gefolgt von Blöcken des anderen, spricht man von Blockcopolymeren. Für eben solche speziellen Anwendungen wird die ionische Polymerisation angewandt. Ein Beispiel sind die synthetischen Gummis Acrylnitril-Butadien-Kautschuk (NBR) und Styrol-Butadien-Kautschuk (SBR), die bei der Herstellung von Autoreifen Verwendung finden. Nachteil dieses Verfahrens ist seine hohe Empfindlichkeit gegenüber Verunreinigungen, Wasser und Sauerstoff. Ionische Polymerisationen sind daher aufwendiger und kostenintensiver als die radikalische Polymerisation.

Metallorganische Katalysatoren
Diese Polymerisationen finden in Gegenwart von Katalysatoren statt. Beim Katalysator handelt es sich um einen Metallkomplex (Verbindung aus Metallatomen, umgeben von weiteren Spezies), der in der Lage ist die wachsende Kette zu binden. Die Addition weiterer Monomere geschieht durch Einschub (Insertion) des Monomers zwischen wachsende Kette und Katalysatorspezies. Resultat ist ein höherer Ordnungsgrad der entstehenden Polymere (s.Taktizität), sowie ein geringerer Verzweigungsgrad. Aufgrund dieser reguläreren Struktur erfolgt auch die Packung der einzelnen Ketten im Festkörper effizienter, der Kunststoff wird dichter. Die zur Zeit industriell wichtigste Katalysatorklasse sind die der Ziegler-Natta-Katalysatoren. Eine Rolle spielt dies zum Beispiel bei der Herstellung von Polyethylen.
Bei Low-Density-Polyethylen (LD-PE) handelt es sich um in der Gasphase polymerisiertes Ethen, mit geringem Ordnungsgrad, vielen Seitenverzweigungen und geringer Dichte. Diesen Kunststoff findet man vor allem als transparente oder auch gefärbte Verpackungsfolie von Getränkeflaschen, Büchern, CDs, etc.
High-Density-Polyethylen wird mit einem metallorganischen Katalysator im Ziegler-Natta-Verfahren hergestellt, es resultiert ein Polymer mit hohem Ordnungsgrad, wenigen Verzweigungen und hoher Dichte. Dieser Kunststoff findet beispielsweise Verwendung als Material für Autotanks, Benzinkanistern etc.

Stufenpolymerisationen
Im Gegensatz zur Kettenpolymerisationen erfolgt in Stufenpolymerisationen die Bildung der Polymere nicht durch Initiation einer wachsenden Kette, die weiter sukzessive Monomer addiert, sondern durch direkte Reaktion der Monomere untereinander. Diese Reaktion kann unter Freisetzung eines Nebenprodukts wie Wasser (Polykondensation) oder durch einfache Addition der Monomere zu einer neuen Spezies (Polyaddition) erfolgen.


Diese Polyreaktionen werden üblicherweise in drei verschiedene Reaktionstypen unterschieden:


    Polymerisation

    Polykondensation

    Polyaddition



Polymerisationen
Diese verlaufen stufenlos und ohne Abspaltung von Nebenprodukten.

Man unterscheidet verschiedene Arten der Polymerisation, je nach Reaktionsmechanismus:
- Radikalische Polymerisation
- Ionische Polymerisation
- Ziegler-Natta-Polymerisation, bei der räumlich gleichmäßig aufgebaute
  Polymere entstehen.



Polykondensationen
Diese verlaufen in Stufen und mit Abspaltung von Nebenprodukten.

Bei Polykondensationen erfolgt die Bildung der linearen Kette durch intermolekulare Reaktion bifunktioneller Polymere unter Abspaltung einer kleineren Spezies, wie beispielsweise Wasser oder Alkohole. Eine wesentliche Bedeutung besitzt die Polykondensation für die Polyamide.
 
Carbonsäuren reagieren mit Aminen zu Amiden. Setzt man Moleküle ein, die zwei Carbonsäuregruppen tragen, kann eines dieser Moleküle mit zwei Aminen reagieren. Es entsteht so ein Polymer aus drei Monomeren (eine Carbonsäureeinheit, zwei Amine). Tragen die eingesetzten Amine auch wieder zwei Amingruppen, kann die zuvor entstandene Spezies wiederum mit zwei Carbonsäuremolekülen reagieren usw. Die so entstehenden Polymere können sich dann auch noch weiter untereinander verbinden, so dass der Polymerisationsgrad entscheidend von der Reaktionsdauer abhängt (siehe Carothers-Gleichung).
Durch Reaktion von Dicarbonsäuren mit Diolen (Dialkohol) werden so Polyester hergestellt. Unter den wichtigsten durch Polykondensation hergestellten Kunststoffen sind Polyethylenterephthalat (PET), ein Polyester, Nylon, ein Polyamid und Bakelit, ein Duroplast.



Polyadditionen
Diese verlaufen ebenfalls in Stufen, aber ohne Abspaltung von Nebenprodukten.

Bei Polyadditionen erfolgt die Bildung des Polymers durch Addition der einzelnen Monomere untereinander, ohne die Bildung von Nebenprodukten. Eine große Gruppe von Polyaddukten bilden die Polyurethane.
 
Isocyanate reagieren mit Alkoholen in einer Additionsreaktion zu sogenannten Urethanen. Auch hier gilt: setzt man bifunktionelle Monomere ein, erfolgt die Bildung langer linearer Ketten. Auf diese Weise hergestelltes Polyurethan wird für Armaturenbretter, Lacke, Klebstoffe etc. verwendet. Setzt man der Polymerisationsmischung Wasser zu, reagiert dieses mit den Isocyanaten zu Aminen und Kohlenstoffdioxid. Das in der Mischung freiwerdende CO2 wird in Form von Bläschen in den Kunststoff eingeschlossen, so dass man einen Schaumstoff erhält. Polyurethanschaumstoff wird für Matratzen, Sitzmöbel, Schwämme, etc. verwendet.


Durch Polymerisation entstehen:
- Polyethen (PE)
- Polypropen (PP)
- Polystyrol (PS)
- Polyvinylchlorid (PVC)
- Polyacrylnitril (PAN)
- Polytetrafluorethen (Teflon)
- Polyacrylate

Durch Polykondensation entstehen:
- Polyamide (PA)
- Polyester (PES)
- Formaldehydharze

Durch Polyaddition entstehen:
- Epoxidharze
- Polyurethane
- Polyharnstoffe



Zuletzt geändert 23.02.2016